

Mathematics Methods U 3,4 2022 Test 1

Section 1 Calculator Free Differentiation, Applications of Differentiation and Antidifferentiation

STU	JDENT'S NAME Solutions - WILSON.	
DAT	ΓE : Wednesday 2 nd March TIME: 25 minutes	MARKS: 28
	TRUCTIONS: dard Items: Pens, pencils, drawing templates, eraser, formula sheet	
Ques	tions or parts of questions worth more than 2 marks require working to be shown to receive full mark	S.
1.	(5 marks)	
	Differentiate the following expressions with respect to <i>x</i> with use of the rule indic simplify your answer.	cated. Do not
	(a) $(3x-4x^2)(2x^3+3x-1)$ (product rule)	[2]
	$\frac{dy}{dx} = (3-8x)(2x^3+3x-1) + (3x-4x^2)(6x^2+3)$	
	(b) $\frac{\left(5-x^2\right)^4}{\sqrt{x}+5}$ (quotient rule)	[3]
	$\frac{d}{dx} = \frac{4(5-x^2)^3(-2x) \cdot (x^{2} + 5) - (\frac{1}{2}x^{2})(5-x^2)^4}{(1-2x)^4}$	
	$(\chi^{\prime\prime} + 5)^2$	
	V correctly uses chain rule	
	V dénominator of quotient rule	
	I numerator of quotient rule.	Page 1 of 4

2. (11 marks)

(a) Determine the following:

(i)
$$\int \frac{3x^2 + \sqrt{x}}{x} dx$$
$$\int 3x + x^{-1/2} dx$$
$$= \frac{3}{2}x^2 + 2x^{1/2} + C$$

(ii)
$$\int x(2x-1)^2 dx$$
$$\int x(4x^2-4x+1) dx$$
$$\int 4x^3-4x^2+x dx.$$

(iii)
$$\int \frac{2}{5(3x+8)^5} dx$$

$$\frac{2}{5} \cdot \frac{1}{5} \cdot \int 3(3x+8)^{-5} dx$$

$$\frac{2(3x+8)^{-4}}{15(-4)} + C$$

=
$$\chi^4 - \frac{4}{3}\chi^3 + \frac{\chi^2}{2} + C$$

Vexpands perfect square

Vexpands function completely

Vanishifterentiates

[3]

= -1
30(3x+8)⁴ + C
V takes out coefficient
$$\frac{2}{5}$$

V divides by 3.
V correct antiderivative.

(b) Given that
$$f'(x) = (2-4x)^4$$
 and $f(1) = -2$ determine the equation of $f(x)$. [3]

$$f(x) = -\frac{1}{4} \int_{-4}^{4} (2 - 4x)^{4} dx$$

$$= -\frac{(2 - 4x)^{5}}{20} + C$$

$$-2 = -\frac{(2 - 4CI)^{5}}{20} + C$$

$$C = -\frac{18}{5}$$

$$f(x) = \frac{-(2-4x)^5}{20} - \frac{18}{5}$$

Vantidifferentiates

Vantidifferentiates

Vantidifferentiates

Vantidifferentiates

Vantidifferentiates

Vantidifferentiates

Vantidifferentiates

3. (4 marks)

Sketch a function y = f(x) on the axes provided with all the following features.

- f(2) = f(-2) = 0
- f'(-2) = f'(0) = 0
- f''(-2) = 0
- f'(x) > 0 for -2 < x < 0
- f'(x) < 0 for x > 0

$$\sqrt{\text{roots}}$$
 at $x = -2$ & 2

$$\sqrt{\text{stationary points at } x = -2 & 0}$$

$$V P.O.I$$
 at $x = -2$

4. (8 marks)

(a) The curve $y = x^3 - ax^2 + bx + c$ has a y-intercept of 5 and the gradient at that point is 6. If the curve passes through the point (2,13), determine the values of a, b, and c. [3]

$$C = 5$$

$$\frac{dy}{dx} = 3x^2 - 2ax + b$$

$$6 = 3(0)^2 - 2a(0) + b$$

$$b = 6$$

$$13 = (2)^3 - a(2)^2 + 6(2) + 5$$

$$4a = 12$$

Violentifies C=5

V subs in b, c and coordinate into function and solves a = 3.

(b) A tangent to the curve $y = 8\sqrt{x} + \frac{x}{2} - 4$ is drawn at point *T*. If the tangent is parallel to the line -3x + 2y = 7, determine the equation of the tangent to the curve at point *T*. [5]

$$M = \frac{3}{2}$$

$$y = 8x^{1/2} + \frac{1}{2}x - 4$$

$$dy = 4x^{1/2} + \frac{1}{2}$$

$$\frac{3}{2} = \frac{4}{15x} + \frac{1}{2}$$

$$5x = 4$$

$$\therefore x = 16$$

$$y = 8516 + \frac{16}{2} = 36$$

a = 3

$$y = \frac{3}{2}x + C$$

$$36 = \frac{3}{2}(16) + C$$

$$C = 12$$

determines gradient of 3 V differentiates function V solves for x and y V writes equation $y = \frac{3}{2}x + c$ with sub (16,36) V solves c and Page 4 of 4 States equation.

Mathematics Methods Unit 3,4 Test 1 2022

Section 2 Calculator Assumed Differentiation, Applications of Differentiation and Antidifferentiation

STUDENT'S NAME									
DATE : Wednesday 2 nd March			ch	TIME: 25 minutes			MARKS: 24 be handed in with this		
INSTRUCTIONS: Standard Items: Special Items:		Pens, pe Three ca	Pens, pencils, drawing templates, eraser, formula sheet Three calculators, notes on one side of a single A4 page (these notes to be han assessment)						
Questic	ons or par	ts of questions wor	rth more than 2 i	marks require wo	rking to be shown to re	ceive full man	rks.		
5.	(5 mar	ks)							
	A probe moving through the solar system uses a solar panel to charge its batteries. The number of millivolts the panel generates depends on the distance in millions of kilometres, x , from the sun. The relationship can be described by the equation:								
				$f(x) = \frac{4000}{x} +$	$\frac{8000}{x^2} + 400$				
	(a)		•		nge in voltage gene ometres from the s	-		[1]	
		f'(x) = -	40002	t 16000					
	(b)			[2]					
		2=600	tu(1900) =	-0.0112	volts/millio	n kin	1 x = 600	0	
	(c)		change in vo	ltage generate	d per million kilom un to 10 ⁹ kilometres	etres, when	the probe		

places.

= 0.0067 volts/million km.

6. (7 marks)

The cost in dollars of producing x items of a product is given by C(x) = 3000 + 5x.

The revenue per item sold is given by the expression \$40-0.02x.

Give the equation of the profit, P(x), and simplify. (a)

P(x) = x (40 - 0.02x) - (3000 + 5x) [2] = -0.02x² --V simplified

Determine how many items are needed to make a maximum profit and the maximum (b) [2]

x= 875 items V determines x V determines P(x). Par \$ 12312.50

Determine the marginal profit of the 250th item sold. (c)

> V differentiates P(x) P'(x) = -0.04x + 35V subs in 250 AP=-0.04(250) + 35 1 maluales P'(250) = \$25

[3]

7. (7 marks)

A company wishes to design cylindrical metal containers with a volume of 16 cubic metres. The top and the bottom will be made of a sturdy material which costs \$2 per square metre, while the material for the side's costs \$1 per square metre.

(a) Determine the equation for the cost of the container, C, in terms of the radius, r. [3]

$$16 = \pi r^{2}h$$

$$\therefore h = \frac{16}{\pi r^{2}}$$

$$SA = 2\pi r^{2} + 2\pi r \left(\frac{16}{\pi r^{2}}\right)$$

$$= 2\pi r^{2} + \frac{32}{r}$$

Cost =
$$4\pi r^2 + \frac{32}{r}$$

Vestablishes h

Vestablishes SA.

Vestablishes Cost.

(b) Showing use of calculus techniques, determine the radius, height, and cost of the cheapest container possible. Give the lengths to 4 decimal places and cost to the nearest cent. [4]

$$\frac{dC}{dr} = \frac{8\pi r^3 - 32}{r^2}$$

$$0 = \frac{8\pi r^3 - 32}{r^2}$$

$$h = \frac{16}{77(1.0839)^2}$$

$$C = 4\pi(1.0839)^2 + \frac{32}{1.0839}$$

8. (5 marks)

The ratio of the radius, r, to the height, h, is 5:3 for a specific cone. The cone is to be filled with water to a depth of h cm.

- (a) Show that the volume of the cone is given by $V = \frac{25\pi h^3}{27}$. [2] $V = \frac{5}{3}h$ $V = \frac{1}{3}\pi \left(\frac{5h}{3}\right)^2 h$ $V = \frac{1}{3}\pi \left(\frac{5h}{3}\right)^2 h$
- (b) Determine the approximate increase in the volume of liquid in the cone if the depth increases from 5 cm to 5.02 cm to 2 decimal places. [3]

$$\frac{dV}{dh} = \frac{25 \pi h^2}{q}$$

$$\Delta V \approx \frac{25 \pi (5)^2}{q} \times 0.02$$

$$\approx 4.36 \text{ cm}^3$$

$$V \text{ diff venholes } V$$

$$V \text{ substitutes in } h = 5 \text{ and } 0 h = 0.02$$

$$V \text{ walkates } DV \approx$$